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established, this distance measure being chosen because of its statistical

% applications. Numerical examples confirm the superiority of the new
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1. Rates of convergence in extreme value theory

Let F denote a probability distribution function and suppose there exist
constants a_ > O and bn’ for n21, and a non-degenerate distribution function G
such that

lim Fn(anx +b ) = G(x). (1.1)

n—-»°

Then G may be taken to be one of the "three types”

A(x) = exp(-e ), (1.2)
0 x < 0, (2>0)
¢, (x) = (1.3)
exp(-x ), x>0
exp (-(x)¥). x <0, (a>O0)
¥ (x)

(1.4)
1 ., x>0.

Alternatively, G may be taken to be of "Generalized Extreme Value" form
1/1} (1.5)

where y, = max(y.0) and -® ¢ v < ®: the case v = O interpreted as the limit

G(x) = exp{- (1+vx)

v =2 0, which is (1.2). The range of the distribution in this case is the set
= {x: l+vx > 0},
i.e. (—1-1. o) if v > 0, (ﬂm.w_l) if v €0, (~»,®) if v+ = 0. These results are
well known and we refer to the books of Galambos (1978) and Leadbetter,
Lindgren and Rootzén (1983) for details.
Interest in rates of convergence started with the very early paper of
Fisher and Tippett (1928). They showed for normal extremes, that the

appropriate limit is (1.2), but they argued that a "penultimate” approximation

within the family (1.4) is better in practice. In the context of (1.5), this
is equivalent to saying that the limiting value +=0 is better replaced by a

sequence of values T where 7nf 0 as n -m,

The modern theory of rates of convergence may be considered to have begun
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with the works of Anderson (1971, 1976) and Galambos (1978, Section 2.10).
They gave general formulae for computing pointwise rates of convergence. Since
then, the theory has developed in three main directions.
The first direction has been towards the computation of explicit upper
bounds for

sup IFn(anx + bn) - G(x) | (1.6)
X

when an.bn are chosen appropriately. Hall and Wellner (1979) obtained the
sharp upper bound n_1(2+n_1)e-2 when F is exponential, and Hall (1979) obtained
the bound 3(log n)-1 when F is normal, both with G = A. Davis (1982) combined
the Hall-Wellner result with the probability integral transform to obtain a
result for general F, but it requires rather detailed computations to apply it
to any particular case. The best results in this direction have been obtained
by Resnick (1986), who gave general results assuming essentially the von Mises
conditions, introduced in Section 2. An interesting alternative approach,
based on Zolotarev's method of ideal metrics, is given by Zolotarev and Rachev
(1985), though this is currently confined to the ¢a and Wa limits.

The second direction of study stems from Anderson (1971), and is really
more concerned with the structure of the remainder term than with explicit
bounds. Smith (1982) derived uniform rates of convergence to ¢a assuming a

"slow variation with remainder” condition

S1EHBL - < 1e0(e(e)

for each fixed x>0, where g(t) - 0 at t > ®, A simple transformation allows
this approach also to be applied to Wa. Cohen (1982b) took rather a similar
approach to the limit A, starting with the de Haan (1970) representation
-log F(x) = c(x) exp {-fX 2{ q¢}  (x 3 X)
X f(t)
(c(x) = - a(x) » 1, f differentiable and f'(x) - 0). As was pointed out by
Anderson (1984), the alternative representation with a(t) = 1, due to Balkema

and de Haan (1972), allows some simplification of Cohen's results. In most
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Eizz cases this approach leads to improved approximations for F'. Rates of

EEEE convergence of the penultimate approximation have also been established (Cohen
e 1982a,b, Gomes 1984), the normal case for instance being of O{(log n)-2}. The
§§:§ ' two directions for tba have partly been brought together by Omey and Rachev

;E:?; n (1987).

‘,."“ The third direction of study concerns the extension of the problem from
‘::;:i statements about (1.1) or (1.6) to more general convergence criteria involving
;EE: the joint distribution of several largest order statistics and convergence of
’h" densities instead of distribution functions. These considerations are

:.;:': especially relevant for statistical applications. Reiss (1981) obtained an
3:3 asymptotic expansion for the distribution of the k largest order statistics
' from the uniform distribution, with rates of convergence (see also Kohne and
z".; Reiss, 1983) and Falk (1986) extended this to general distributions via the
f.':‘ i probability integral transform. This would appear to be a very powerful

.Jf"' approach, though Falk's conditions are not easy to verify in particular cases.
Eg::; Weissman (1984) took a different point of view, asking how fast k could grow
;;’EE (as a function of n) for convergence to remain valid. Reiss (1984) pointed out
;3' the importance of Hellinger distance for statistical applications.

Eié The present work is aimed at partly unifying these different approaches,
: both with a view to combining the results for the three domains of attraction,
' and incorporating the approach of Reiss and Falk within the general scheme.
::‘:':'s Convergence in Hellinger distance implies convergence in total variation

:::03: distance, which in turn implies uniform convergence of distribution functions.
'.' . Therefore it seems to us that Hellinger distance is the most appropriate

E-" distance measure to use. The usefulness of Hellinger distance in statistical
.’ - applications is explained briefly in Section 3.

;:f:‘.. The structure of the paper is as follows. Section 2 develops the

:E approximations we use. The emphasis here is on having a single form of

:* improved approximation valid for all three types. We also extend the notion of
5
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4
penultimate approximation. In Section 3, proofs of convergence in Hellinger
distance are given. These cover both the classical and threshold forms of
extreme value approximation, and are expanded also to cover the joint
distribution of k largest order statistics (for fixed k). Finally in Section 4
we give numerical examples of our new approximations, demonstrating that they
really do make a considerable improvement on the classical extreme value

approximations.

2. Development of the approximations
Suppose F has density f(x) = dF(x)/dx defined on the range (x*,x*) where

= inf{x: F(x) > 0} 2 =, x = sup{x: F(x) < 1} € o.

Then we may write

~-log F(x) = exp {-Ii* dzt)} X, < x < X (2.1)
where
$(x) = ‘F(x)}?ﬁjf(x) . (2.2) ’
Sometimes we use the alternative representation ]
1-F(x) = exp { f:‘(* ¢(t) o) X, <x< Xt (2.3)
where
s = L (2.4)
Whichever form is adopted, we shall assume ¢ is continuously differentiable and
lim, ¢'(x) =~ (2.5)
xTx

for some real -~.

Equation (2.5) is one form of the well-known von Mises conditions which
are sufficient though not necessary for the domain of attraction of an extreme d
value distribution (see de Haan (1976)). It makes no difference to the limit
which of the two definitions of ¢ is adopted, and the limit is given by (1.5)
with the same v. The precise significance of (2.5) has been given by Pickands

(1986): it is a necessary and sufficient condition for "twice-differentiable”
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5

EE';;EE convergence, meaning that not only (1.1) holds but also convergence of the

;é:;: corresponding densities and derivatives of the densities. Convergence of

' densities alone has been studied also by Sweeting (1985), following de Haan and
;&g’; ' Resnick (1982). For our present purposes, convergence of densities is relevant
ﬁg{s . but our main motivation for assuming (2.5) is mathematical tractability.

:’S’ From (2.1) we have

Y _ -

S . o
::.531 #(u ;(:‘;’(“” =1+ J5 ¢ (u + wo(u))dw. (2.7)
i:}i".': By the mean value theorem, for each s

h v R

"Q:::q‘ where y is between u and u + s¢(u). Consequently

o .

e

f.f e @y T T [

AL 0

: : is a continuous function of y, takes on both positive and negative values as y
':g;‘ ranges from u to u + x¢(u) (unless ¢' is constant), and so is zero for at least
;:Iif'., one y. Substituting in (2.6),

:23" —log-Fgl;g+F)((:§u)) - {1+x¢.(y)}-1/¢'(y) (2.8)
3323", for some y between u and u+x¢(u). Now let us define, for each n > 1, b such
!::':l that -log F(bn) = n_1 (well-defined, since F is continuous) and let a = ¢(bn).
::: Substituting u = bn in (2.8),

KEY ~1/7 (x)

5:55;. F(ax + b ) = exp[-{l+xv (x)} ] (2.9)
':‘:.:E‘ where -vn(x) = ¢'(y). y being as in (2.8). If ax+ bn is outside the range
' (x*.x*) then we interpret both sides of (2.9) to be O or 1 as appropriate.

;;; Now suppose (2.5) holds, and let x be a fixed number in the range R'r

::': ‘ (recall (1.6)). It is easily verified from (2.5) that

& 1im ﬂﬁl =7 (X" =®); lim, _'t,(‘EL = - (X (@) (2.10)
;.,“ u-m uTx X -u

:g::" and hence that u + x¢(u) 1 Xt uniformly over finite ranges of x as u 1 x.

l ]
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6
Thus (2.9) tends to (1.5) as n » ®». This provides an independent proof of the
sufficiency of (2.5) for (1.1), but in a form particularly well suited for the
machinations to follow.
If we start with (2.3) in place of (2.1), then the argument is the same up

to (2.8). which now reads

1 - Il"(t_l ;(z«;(u)l = {1+ x¢'(y)) /') (2.11)
which in turn implies for x > O that
-1
v -1

(1+xy) ,(v20andv<0, 0<x< ")
lim L= F(u + xe(u)) _ (2.12)
uTx* 1 - F(u) -1

0 , (v <0, x>=7)

This is the Generalised Pareto distribution introduced by Pickands (1975),
which is particularly useful as a model of excesses over high thresholds. Some
statistical applications are given by Smith (1984, 1987), Davison (1984), Joe
(1987) and Hosking and Wallis (1987).

So far we have replaced ¢'(y) by v. In some sense, however, what we are
doing is expanding the tail of F about u, so it may make more sense to
approximate ¢'(y) by ¢'(u). This is especially true if +=0 for then, by virtue
of (2.10), u + x¢(u) is (for fixed x as u 1 x*) much closer to u than to x .
Thus we replace v in (1.5) by = ¢'(bn). v in (2.12) by v(u) = ¢'(u). The
first of these is the penultimate approximation, precisely as it is defined by
Gomes (1984) and equivalently to the definition of Cohen (1982b). Although
Cohen and Gomes both prove that the penultimate approximation is better in
general than the ultimate approximation (in the sense of giving a faster rate
of convergence) they do not really give any motivation for considering it in .
the first place. The foregoing may provide some. Moreover, it also suggests
that we could do the same thing when v # O, providing a penultimate
approximation in this case also. Some of the evidence given later will suggest

that this is an advantageous thing to do. So far as we are aware, this is the

TR T Ol DO 20 B QRIS L S A D L L D . S s 0

( ) ) ) OO0 f ) DO A A (i GO )
IO Oy GOCAYD OISR () (XM N W] QU 0, 10 WG Y, N s
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*y (
é:’ first time that a penultimate approximation has been suggested when v # O.
g'l
":: If we want to go beyond this, the logical next step in view of (2.7) is to
1."'
fy o
v’ consider an expansion of ¢'(u + w¢(u)) about ¢'(u). At this point, however, we |
:‘ ’ interrupt the proceedings to give some examples. These will serve both to
E)
:%:‘ illustrate what has been done so far, and to motivate the next step.
"
) »*
.::‘;i Example 1 Suppose x = +® and
e - - -B-
W ~log F(x) = &x @ {14Dx P + 0(x P€)}. x » w. (2.13)
UK

)
f;:::’. where C, a, B, € are positive constants and D is rval. This includes nearly
",.; all practical examples in the domain of attraction of (1.3), e.g. Pareto,
’D
‘ Cauchy, t, F. We assume the relation (2.13) is twice differentiable, in the

Q
:|,|, sense that we can differentiate term by term without affecting the order of the
A

‘. O-term. It follows that
PN N“

» ' 1 D, -1 - -B-e
q‘ $'(x) = S+ —91?—)—&2 x P+ o(xPey. (2.14)
: *» v
A -1 : -B
Klh Thus * = a ~ and the rate of convergence in (1.1) is O(¢ (bn) -7) = O(bn ) =
Q‘\. ) O(n—ﬁ/a) as in Smith (1982). However, in the case B = 1 the second term in
%ﬁ (2.14) is O and so the rate of convergence is o(n_l/a). Smith (1982) showed
LA

W
j!':q‘. the conventional approximation
J -1
A Fi(b x) »0,(x)  (F(b) = exp(-n "))
8N -B/ -1/a
:-f‘:' achieves O(n B a) for all B and, though a way of reducing this to o(n ) when
SN
‘EL B = 1 was proposed, the construction is artificial. Incidentally, the rate of
] O(n-B/a) is optimal (amongst all choices of an’bn) when B # 1.

i
'} Continuing from (2.14), we have when 8 % 1
" ' » - 1 = =
o ¢ (u+ x¢(u)) - ¢'(u) o 2L L Py 4 208 yP gy

e . a
_ D -1 - . -
DB P v e )P -1 (2.15)
J :n a
R using (2.5) and (2.10).
R

If we start with 1-F(x) in place of - log F(x) in (2.13), then the
et corresponding results hold for the threshold approximation (2.12).
: 'ad

'Yy
5‘-‘ |
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Example 2 Suppose X+ < @ and

- log F(x) = C(x*-x)® {1 + D(x"*x)P + o((x*x)P*®)}. x 1 x*  (2.16)
(C.a.B. € positive, D real) and that this relation is twice differentiable. If
we replace F(x) by 1 - F(x*-x). this includes many distributions in the minimum
domain of attraction of the Weibull distribution, with applications to
reliability and elsewhere. In this case

$'(x) = - =+ -22&251—11—-(x*—x)ﬁ + O((x*-x)B+e) (2.17)
a

R~

SO v = -a_l and

o (u + xo)-¢ (u) ~ LELD ((F oy - (Fw)f
a
. -—Dﬂ%)— -0)P (1 + xe' ()P - 1}. (2.18)
a

—ﬁ/a) and there is no

In this case the rate of convergence in (1.1) is O(n
possibility of improving this by a different choice of a and bn (Smith 1982).
Again, if we start with 1 - F(x) in (2.16) then we get similar approximations
for the threshold distribution.

In neither example so far have we emphasized the penultimate

approximation, but numerical evidence of its efficacy will be given later.

Example 3 Let v+ = 0. If we slightly strengthen the conditions for what Cohen
(1982b) called Class N, then it is valid to make a Taylor expansion

¢ (u + x¢(u)) - ¢'(u) ~ x¢(u)¢’"(u). (2.19)
Examples include most well-known distributions in the domain of attraction of
A, e.g. normal, log normal, gamma, Weibull, but not the exponential or logistic
distributions for which ¢' decreases exponentially fast. These are, in fact,
the most important cases to which the theory we are going to develop does not
apply, though since the reason is essentially that the convergence occurs tco
quickly, we would argue that this exclusion is not of importance for

statistical applications.

Lo LN p . A K LR Fn g SR " r Sk i = " m Tttt e e
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9
It is not obvious how to combine (2.15), (2.18) and (2.19) into a single
general formula. We shall, however, make a proposal. Define the family fo

functions on 0 ¢ x < ®,

h (x) = &5 o lau = (2.20)
P log x,. p = 0.

This function often arises as a remainder term in the theory of slow variation
(Smith, 1982, Goldie and Smith 1987).
We assume that there exist real c and p and a non-negative function g,

with g(u) > 0O as u t x*. such that

$ (W{e (u + wp(u)) - ¢'(u)}

g(u)hp(l + wo' (u)) =cC, (2.21)

lim
uTx*

for each w e Rq. We fuither assume that ¢'(x) is non-zero and of the same sign

for all sufficiently large x < x*. and that p is either O or of the opposite

sign to ¢'. Examples:

2
Example 1 p = -B. g(u) =u P, ¢ = - D 3-1 .
a
Example 2 p = B, g(u) = (x*-u)B, c = - Dﬁ2( g + 1) i

a

Example 3 p undetermined, g(u) = ¢(u) J¢'‘(u)|. c = % 1.

Example 3 relies on hp(l+w¢’(u)) ~ Wp'(u) as ¢'(u) = 0. The fact that p is
undetermined in this case is not important, since the results we derive are
independent of p (in this case) up to the claimed order of approximation. Note
that we also allow ¢ = O, so the B = 1 case of Example 1 is also included,
though in this case a more logical approach would presumably be to take the
next term in the expansion.

Substituting from (2.21) in (2.7) and then (2.6). setting u = b_ where

1

-log F(bn) =n ", a = ¢(bn). T = ¢'(bn). ro = g(bn). routine manipulations
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. g 10
e
;::.q lead to
s /7
'::5' Fn(anx +b ) = exp[-(1+xv ), {1+ cran(x.'vn))] + o(r ) (2.22)
’v for each fixed x, where )
& h (1+xn) + ph_; (1+xn) - (p+1)log(1+xn)
v .'-': L 3 ’ 1+ XN > O'
b,
2 H (x.m) = plp + 1)n (2.23) ]
,e 0, 1 +xn < 0.
o
t'0:l A rigorous derivation of (2.22) will be given in the next section. The cases
:,.. p =0, p =-1 are defined by taking appropriate limits as
] .'
O - -
’ (14xn) ! log(1+xm) + log(1+xm) = 2(1-(1+xn)"")
. H 1(x.n) = 3
v _
n
" 1, 2 -1
o 5 log™(1+xn) - log(l+xn) + 1-(1+xn)
i Ho(x,n) = n3
o
: when x > 0. Note also that
€
.',c" 3
A lim H (x.n) = =, (2.24)
\ o P 6 )
P )
- confirming that, in the case v, 0. Hp(x."rn) in (2.22) may be replaced with
::-‘ x3/6 (independent of p) without affecting the claimed rate of convergence. ’
"
e For the threshold approximation (2.12). we should start with (2.3) instead
o
D of (2.1); the result then obtained is
(r)
. 1 -~ F(u + x¢(u)) _ . -1/¢'(u) .
ey TR = {1+ %9t ()] {L+eg(wH (x.¢' (1)}  (2.25)
150
n + o(g(u))
L,
" N
b for each x > O.
o
:‘3‘.: 3. Hellinger convergence
+ ]
™ Define
®. .
il n
& Fal) = Fi(ax + by). o)
"'r; —1/1n ’
;." Gn(x) = exp[--(1+x'yn)+ (1+crn Hp(x.vn)}]. -
.: In (2.22), we asserted that IFn(x)—Gn(x)l = o(rn) for each fixed x. It is
-"'..'. natural to ask whether this result holds uniformly over all x.
v
":;»l;‘, This is not the only sense, however, in which the closeness of Fn and Gn
23
e,
: o, {.‘f\$ el w4l \ n’ f‘.r,-r‘-r. .d“r ;_-r ” ‘\.,'9'-\.._\:_ ‘ e :‘"J‘-‘&} GA7 Py
0
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could be measured. Another question is whether the densities fn = an/dx. 8, =
dGn/dx converge uniformly at rate o(rn). If they do, then it follows from an

easy extension of Scheffe's Lemma that

sup | £,(c)dn - [ g (x)ax| = ofr). (3.2)

where the supremum is over all Borel sets B. This is the mode of convergence
used by Falk (1986). Another measure studied by Reiss (1984) is Hellinger

distance:

V2x) - gt/ %) ax)'2. (3.3)

H(f .g ) = [J{f
If H(fn.gn) = o(rn) then (3.2) is immediate.

Equations (3.2) and (3.3) have direct statistical interpretation. For
example, if B is the rejection region of some test calculated under the
assumption that g, is the correct distribution, then (3.2) says that the error
in the computed probability of rejection is at most o(rn). The importance of
Hellinger distance arises from the following inequality, pointed out by Reiss.

Suppose we have N independent observations from each of fn and g - and let

fiN). ggN) denote the resulting joint densities. Then

He( gy < WH(E g ).
Suppose H(fn.gn) = o(rn) and n » @, N - o such that Nrn is bounded. Then
H(fle), gle)) -0
so that the total variation distance between fﬁN) and ggN) is asymptotically
negligible, i.e. statistical calculations carried out as if g, was the correct
density remain valid when sampling from fn. This provides an alternative
method of justifying statistical calculations based on extreme value
approximations, avoiding the awkward moment-convergence technicalities of
Goldie and Smith (1987), Smith (1987), Cohen (1987a, 1987b) and Joe (1987).
The main additional condition needed to prove Hellinger convergence is

1

v D This condition is easily understood statistically, since when v ¢ - 35

1
5
the problem is non-regular and standard maximum likelihood techniques fail.
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Q':.:: Alternatives in these cases are proposed by Smith (1985, 1987).
-
?:,.‘k For further information about Hellinger distance and total variation
Xh
-t distance we refer to Ibragimov and Has'minskii (1981) or Section 4.2 of LeCam
i.-: (1986). The following result is adapted from Theorem 7.5 of Ibragimov and
yn.:h-
s , .
s Has 'minskii:
"P‘ <
)
:" Lemma 3.1 Let fo(x;B) denote a family of non-negative functions indexed by
o _é_
e.‘ vector parameter 0 € 6. Let go(x;e) = fo(x.B) with gradient vector vg with
R
i respect to 6. Suppose fl'f2 are two functions such that, for each x in a set
-V, "1
’:Esl: B, there exist Gi(x) (i=1,2) such that fi(x) = f(x: Gi(x)). Suppose Gi(x) 3
Wby
. 8 C @ for each x e B, i=1,2. Then
A 101
L J 2 2 2 2 2
o F(E5(x)-15(x) ) dx < sup |6, (x)-8,(x)|° J sup,, |ve (x.0)|%dx.  (3.4)
O B xeB B 6e6
:;:::
.f»j-: Remark 3.2 This differs from Ibragimov and Has'minskii in that 91 and 92
O
! depend on x; i.e. fi do not have to be members of the family fo(x;e) but only
[y
.j,fl close to it. Finiteness of the integral in (3.4) is closely related to the
3
:::?:; boundedness (over 9*) of the trace of the Fisher information matrix.
’L‘-’..
D)
;'.;. ) Proof. We have
ol 1 1
R 2x) - £2(x) = g (xi 0,(x)) - g (xi Oy(x))
:":: 1(x) 2(x) = go(x. 1 (x g, (x: 85(x
i 1 T
= 5 {8,(x) - 8,(x)}" vg {8, (x) + t(6,(x) - 6,(x))} dr.
:o 2 so that
A
54 L
‘ — —
2 2 2 2 ol 2
20 {F1(x) - £5(x)}" < 18,(x) - 8,(x)," Sy [v8,{8,(x) + t(65(x) - 6,(x))}|%dr.
- [
:6"” Now just integrate with respect to x.
) v
.:,0.‘ We now come to our main result. .
b ‘
a:.. ;
.'
S
'I-{
) '--\
B |
4 |
@4 ‘
l'i
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e Theorem 3.3 Suppose ¢, defined from (2.1), satisfies (2.5) with v > —% and
- (2.21) with its associated conditions. Define bn by F(bn) = exp(—n_l). a =
v ¢(b ). v =¢'(b). r = g(b,). Define F .G by (3.1) with associated density
'9"?!' '- fn.gn. Suppose there exist, for each u, variables sl(u) > 0, sz(u) < 0 such
.'n . that
) {1+ ¢ (s, (u)) /¢ ()

2 lim, . - 0. (3.5)
i:. uTx g (U)

ity -1/¢’

e exp[-{1 + ' (u)s,y(u)) /* (W)

) lim 2 = 0. (36)
uTx g (u)

K
':‘c'. lim, g(u)max[{1 + s¢' ()P, {1+ s¢’ (U)) . log{l + s¢'(u)}] =0 (3.7)
(X UTX

A
@ uniformly on s e (sz(u). sl(u)). Define c(u.x) by

T el x) g(w) B (1 + x¢"(u))

and suppose also that

o 0 ({8 (u + xe(u)) - ¢'(u)}

lim c(u.s) = (3.8)
o UTX

uniformly on s e (s2(u). sl(u)). Then rnH(fn,gn) +0as n -,

e Remark 3.4 The simplest way to demonstrate (3.5)-(3.8) is to define $+S9 by
Rt {1+ ¢ (s ) V4O < K,

R exp[~(1 + ¢* (w)s,(w)) ¢ (W7 = Kru)

b for some fixed K > 2, and then to show that (3.7), (3.8) hold for this choice

Py of S1+So- For (3.7), considering first the upper limit s { Sy, we have

e ' ] 1-K5¢'

Sk g(u) {1+ #'{u)s (u))® = g(u)!7KO*" (W)

W ) so we require 1-K&¢'(u) 2 61 >0asut x . The only case that causes any

w’“ﬁ difficulty is when + <€ 0 and 6 = -1: then we do need v > —; The limit as s -

s, is much easier since {1 + ¢'(u)s2(u))_l/¢ (u) grows only logarithmically in

2
o 1/g(u). Thus (3.7) follows.

4 Now let us consider (3.8), breaking this up into cases v = 0, v > 0, v (

~"
X
4 . u .
"' oy “4"1 5 -), ‘-)"‘-y‘- 'v(.."p “ "'}.} ™ "'.F.. \' "'.'*Oh A% BCT) .
o el N , X Fod IR0 W
. N e e ,‘. ,.‘:, ".r. Y, e dtaety
4

o ; B
R ORI N L% 5 ROLH 0‘. LN '.4 ‘A‘ ‘\'.“' whele ‘s'.‘ c’::ﬂ ‘s’. " hy! 0', O ;.I';.I'. l‘, . "l' 'c'.'o' e A
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; 0. For v =0, it suffices from (2.19) that

ﬁ' ¢"(:.f(3;(u)) - 1 uniformly on |s] < K log |#(u)¢' " (u)] (3.9)
e for some K > 2. This is similar to several conditions in Cohen (1982b), and is

% automatic if ¢''(x) (in case X" = ) or ¢"(x*—x—l) (in case X < ®) is )
j regularly varying. All of Cohen's "Class N" examples satisfy this.

:5 For v+ > O, assuming (2.13) it follows that the relative error in (2.15) is

§( O(u—e) if x > 0, O{up(u + x¢(u))-B-e} if x < 0. We must therefore show

. B -B-e

o u“{u + ¢(u)sy(u)} = 0. (3.10)

ﬁ But

u+ dwsy(w) = 2 14 g sy} + w1 - 20

i = oful10g g(u)|™* (%)} + o(ug(u))

’% from which (3.10) follows.

:ﬁ For v < O, assuming (2.16), a very similar argument settles (3.8) as

;% s > s, but we have an additional complication as s - s because of the
;? possibility u + sl(u)¢(u) > x'. This is most easily settled by defining ¢'(x)
% to be v whenever x > x*. hp(x) to be --p--1 whenever x < O (assuming p < 0). .
Cg Then it is easily seen that (3.8) holds.

; Thus we would argue that (3.5)-(3.8) are reasonable assumptions which hold

s in most examples, after excluding certain cases which have been noted earlier.

s |
%. Proof of Theorem 3.3 First we show i
3 #108) . 5 s 0 _ |
1 o) (3(n) - g2(n)}%ax = o(g”(b_)) (3.11)
hi later extending the range of integration to (-®,®).
%‘ We may write

L4

£ (x) = na f(ax+b )" (ax+h)

: ) ¢(b ) ~log F(anx + bn) o (- -log F(a_ + b )
-logF(b ) ¢(a x + b ) -Tog F(b )

P4

i W 3 .h“

o« o ", o (V.1 .. « LA PR .,
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¢(b_) ¢(b_)ds #(b_)ds
T T O D i B T R 0 ) IR A T R T O KA S
By (2.7).
S(u + so . c(u.w)g(u)h (1 + wé'(u))
u ¢(‘sl)(U)) =1+ s¢'(u) + J‘; ¢,‘(’u) ~dw

| e (ws)g(u) | i
=1+ s¢p'(u) + FYren) IO hp(l + wo'(u))dw

where cl(u.s) is such that ¢, =c uniformly on s e (sz(u). sl(u)). Evaluating
the integral we have

¢, (u.5)g(v)
7

#(u ;(zﬁ(“)) = {1 +sé'(u)} |1+

(1+ 56" () - (1 + 5" ()™’ _ s(1+ se'(n7!
¢’ (u)p(p + 1) p

Now (3.7) shows that this is of form {1 + s¢'(u)}(1 + o(1)) uniformly in s, so

for the reciprocal we have

co(u.5)g(u)
7

$(u) . -1
*(u fus¢(u)) ={1+se(w)} " |1~

(1+ o' (u)® - (1+ s (u)} s(1 + s¢'(u))”}
¢ (u)p(p + 1) ] P

where Cy is another function such that c2(u,s) - c uniformly on (sz(u). sl(u)).

This may also be written

#(u f(zl(u)) = {1 + x¢"(0)} - cy(u.s)g(u)d (s.¢"(u)) (3.13)

where Hé is the derivative with respect to the first component of Hp.

For later purposes, it is also convenient to write (3.13) in the form

$(u) _ ) -1 c3(u.s)g(u)H;(s'¢-(u))
¢(u + sp(u)) {1 + s¢’'(u)} 1 + c3(u.s)g(u)Hp(s'¢'(u))

(3.14)

where cy ¢ uniformly; this is equivalent to (3.13) because of (3.7).
Now take (3.13) and integrate:

¢(u)d 1 . YO
10 3Tt s30Ty = a7(ay losll + x¢7(W) - g(Wfgey(u.s)H (5.9 (u))ds

X
D4
u A,
X ,l'l‘l:. ',: m.‘ .‘.::: '. g‘l'..t = ,‘A'..."n'l. c::'."
it - Iyl

‘l' ‘\'\.n.“ 'Q.Q‘A‘o

W P& AXNA ¥ (&.\-vv r,p',.n. x\'w_r\n- N TRNRN WS R
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and hence
oxp(-S5 e seray? = (1w :
{1+ g(u)e (u.x)H (x.9"(v))} (3.15)
where cq(u.x) is yet another function satisfying ¢y c uniformly on
(s5(u) .5, (u).

Define a new parametric family by

£(x:8,.8,) = exp[-(1+xm)” /(1 + B/H (x.m)}].

8,H (x.n)
-1/7 -1 _ _20p
(1 +xm) "1+ 6H (x.m}(1+ xn) T+ 80 (x.n) ]

where the parameters 7, which we shall identify with v and p are not shown
explicitly as parameters of fo.
By (3.12), (3.14) and (3.15), we have
fn(x) = fo(x: c4(bn,x)rn. c3(bn.x)rn).
But directly from (3.1) we have

gn(x) = fo(x: cr . crn).

B =

OIOP—

We have therefore set everything up to apply Lemma 3.1;: we let gy = f
(52(bn). sl(bn)) and take 6 to be some small interval around (crn. crn). The
only thing to show is that the integral in (3.4) is finite.

Consider first what happens as x = sl(bn)' Note that

2 2
= , 1=1,2.
691 fo 391

As x = Sy we have fo X 1+ xn)-l/n_l. Here we use )( to denote "is the

same order of magnitude as” and always keep in mind (3.7). Consider first

n < 0. We have

of
55% = exp{-(14xn) 7 (1 + O H (x.m)}] [(1+xm) ™/ H (x.m)
_ _ 8,H (x.n)
- (0 )L+ 0 H (o)} ] [(1 4 am)T - 12+992Hp(x,n, ]

l "" ‘....' '

l ‘» ‘.) ‘ ‘0 .' "

sCh 'I,' "'&.’ -, ~- ‘,') -‘, n.;'v 5% ‘\"y Oy '- '4 ,.f 7 '\:.";.' *Tu"- ’\-’.f’ 20 () 'ﬂ\ﬁ}ﬁ '
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the dominant term in which is ¥(1 + xn)_l/n-z. Hence

ag 2
0 -1/7-3
[aTl-} V¥ (1 + xn)

which is integrable as 1 + xn = 0 because 7 > -%— A very similar calculation

2
Og
shows that [6—99} is of the same order of magnitude, as 1 + xp = 0.
2
Now suppose n > 0. In this case $) ® @ and we may assume p { 0. Hence
af
0 ~1/m~1
go, X(1+ xm) T log (1 + xm).

2
Og

0 -/n-1 ., 2
{5@7} X (1 +xn) T 10g%(1 + xn).

Similarly we have

dg 2
0 -1/n-1
[5-5,—] R+ xm) TE
2
So in this case the required integrals are finite for each n > 0 and even
uniformly as - Q.
Similar calculations may be made as x - S but in this case there is no
problem because everything is decaying exponential ly. Hence we conclude that
the integral in (3.4) is indeed bounded, so we deduce (3.11).

To complete the proof, it will suffice from
1 1 1 1
f: {F20x) - g2(x))dx = I fa(x)dx - 207 f L (082 x)ax + 17 En(x)ex

it
\‘ to show that 1 - F (Sl(b )) = O(Y‘ ). 1 -G (sl(b }) = o(rn). and similarly that
;:'::: Fn(s2(b )) and G (52(b )) are each o(r ). In the case of G . these results

., follow directly from (3.5) and (3.6), also using (3.7) to show that the r term
::3?" in the definition of G may be ignored for the purpose of this comparison. In
.:‘::‘.::.: the case of Fn' note that (3.15) is an expression for -log Fn(anx + bn): using
' (3.5). (3.6) and (3.7) again, the result follows. With this the proof of the

\ theorem is complete.
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A similar result is obtained for threshold convergence. We state the

following without proof:

Theorem 3.5 Suppose ¢, defined from (2.3), satisfies (2.5) with v > —%-and

(2.21). Define Fu'Gu by

. F(u+ xe(u) - F(u)
Fu(x) B 1 - F(u) (3.16)
6,00 = 1 - {1+ x' @) 01+ cg(u)(x.47 ()]

{x > 0), with associated densities fu' g, Defining sz(u) to be 0, suppose
sl(u) exists such that (3.5), (3.7) and (3.8) are satisfied. Then
g(u)H(fu.gu) - 0asut x*.

For the k largest order statistics (k fixed, n » ®») it seems impossible to
avoid an additional error term of O(n—l) (cf. Falk 1986). This does not
matter, of course, if nr - o,  which is usually the case in practice. Also, in
this case, it does not matter whether we start with (2.1) or (2.3) as our

definition of ¢.

Theorem 3.6 Suppose the assumptions of Theorem 3.3 are satisfied, with ¢

defined from either (2.1) or (2.3). Let Ylin g.....gYn:n denote the order

statistics of a sample from F, and let Xgn) = ( n-i+lin ~ bn)/an for
i=1,2,...,k, where k is a fixed positive integer. Let fn(xl.....xk) denote the
joint density of Xgn).....X£n). Define

-1/~

¥ (xi0) = (1 +xv) {1+ 6H (xv )}

k
g (x...0q) = Hl(-w,;(x1 ier_)}exp{-¥_(x, :cr )}.
i=
defined when xlz ..... 2xk. 1+ X7 > O for each i. Then

-1
H(E g ) = o(r ) + O(n ').
Proof. Assume ¢ has been defined from (2.1). We have

k -
fn(xl....,xk) = ﬁ iI;Il(anf(anxi+bn)) , k(anxk + bn) .

xlz....2xk.

¥ . '_-(.)l
7. \‘ o

» <a - «
e e N %
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z: Let us first replace this by

?J * k nanf(anxi + bn)
Y fn(xl.....xk) = igl{ F(a %95 } Fn(anxk+bn).
= ni n

q¢$ It is easy to see, by writing the likelihood ratio f:/fn in terms of uniform

W order statistics, that H(fn.f:) is O(n_l). Def ine ¥, as above,

) ’
" wn(x;e) -1 6H' (x.v. )
X £, (x:6) = - -$;T§?§7_ =(1+xv) -7 +P6Hp(:.1n)

ol Now, using (3.14) and (3.15),
*

4 -

! fn(xl.....xk) =

.‘$ K (b ) logF(b_+x #(b_)) logF(b_+x,$(b_))
el - 'jl o(b_+ x.é(b_)) Tog F(b ) *P1” T Tog F(b_))

) i

) k
2 T (£, i ea(Byxy ) My (¢ g0y )r) Yexpl (i cq(byx)r,)}.

£ " 1 =

%g.

oY We also have

o "

Q'Qb gn(xl,....xk) = iZl{fn(xi;crn)»pn(xi;crn))exp{—wn(xk;crn)}.
O The proof is now similar to that of Theorem 3.3, in that we define a

o 2k-parameter family

oy k
™, £oxpee X e(1): 6(2)) = iI_Il(fn(xi:952))wn(xi:9&1)}exp{-\#n(xk;9§l))
with parameters B(J) = (egj).....eij)). J =1,2. We apply Lemma 3.1 with

:S? B = (52(bn)' sl(bn))k' The proof that the integral in (3.4) is bounded is
similar to the corresponding proof in Theorem 3.3, and the extension from B to

Rk is also similar. With this the proof of Theorem 3.6 is complete.

o0 4. Examples

Three examples will be used to illustrate the foregoing theory. These are
normal maxima, lognormal minima and minima from a Gamma distribution with index

‘2 a>l. The last two are treated by reflecting about the origin so as to use the
N

N 3% Y J e R PN %Y SN p& v " A
', v’i‘ o s 2R, )4_4-\ WA AN A \"}’ \( N '3-,,*- N -,.}4.\_.\{ 3. -._,\3‘ < VRN ! A

AN vuu
- ‘ . M
Py " AP X A ! et ‘ﬂ" bﬂ.?. '\ ' . 'l“' .q O 'o, W ‘A~ " ’o‘. " o ."|“' ’ l A ‘ N ted "0."h“i’!'o.".'i::.lﬂ K l‘w l'.. ' 'u:"i' ‘c“‘

[



WA TN TN T G T W TLI VS VU TS T v N wwwwRTwoue o e . T

20
theory for maxima. All three examples have nr -, and this allows us to make
two small changes in the procedures without affecting the claimed rates of
convergence. These are to define ¢ from (2.3) instead of (2.1), and to define
bn by F(bn) = l-n-1 instead of exp(—n-l). Since we are involving the normal
distribution, we use ¢ to denote the standard normal distribution function but
keep ¢ in the sense in which it has been used throughout the paper. The normal
1/2exp(—x2/2).

With ¢ and bn as just defined, we may write

density will be written ¢'(x) = (2r)

= #(b) = {nf(b )" (4.1)
$(b )f' (b )
=¢'(b) = - f(gn) LS (4.2)

We define €, = cg(bn). which is taken to be ¢(bn)¢"(bn) when F is in the

domain of attraction of A. In this case, further application of (4.2) gives

e = 1i t- a2(£T%§%) (4.3)
X=bn

Experience has shown that it is important to use the exact constants; even
minor variations on the foregoing scheme upset the comparisons to follow.

Normal distribution Take F = ¢, f(x) = ¢'(x) and so

o [FY] -

We define bn by ¢(bn) = l—n_l; application of (4.1)-(4.3) yields

a_ = n 1(2m) 2exp(b2/2),
n n
v =ab -1,
n nn
E = ‘72 + v + 82 .
n n n n
The expansion {1 - ¢(x)}/®'(x) = x-l-x-3 + 3x-5 —... shows that ¢(x) . x-l.

¢ (x) ~ -x_2. *(x)¢' '(x) ~ x_4. Since bn = O{(log n)l/2} we have that the

rates of convergence of the ultimate and penultimate approximations are

0{(log n) '}, 0{(log n)72.
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Lognormal distribution Take F(x) = ¢(—a-llog|x|) for x < 0, where 0 > 0. In

this case
-1 -1 -1/2 log|x 2
o) = 07! x| (20T (- LBl
L(x) x|~ 1{1 +0 2log [x]}.

f_iil_] = |x|-2 {1 - 0—2 + 0-2 log|x|}.
f(x)
Hence with Bn satisfying ¢(Bn) = l-n_l. we have

bn = —exp(-aBn).

-1 172 2
a =n albn|(2w) exp(B /2).

-1 -1
T = —anlbn| {1 -0 B} -1,
e = 12 + v - a2|b |-2 {
n n n n

Since #(x) ~ o2[x|(-1og|x])™L. ¢'(x) ~ o2(loglx[) . #(x)¢' " (x) ~ o (log|x]) ™

1- 0_2 + 0“210g|bn|).

the rates of convergence are O(B;l) = 0{(log n)—l/z} for the ultimate

-3/2

approximation, O(B;B) = O{(log n) } for the penultimate approximation.

Gamma distribution Take f(x) = |x|a 1 /F(a) for x < 0, where a > 1. In this

case
f'(x -1
_._f_%;;_:l___cf;]__

30 with bn satisfying l—F(bn) = n—l. we have

a =0 b | ex(lb Dr(a),

T = an(lbn['l(a-l)—l} -1,

p=1l.e = 2|bn|a_2(a + 1)7!
The values for p and e follow from the expansion 1-F(x) =
{al'(@)) ' |x|%{1-a(a+1) " |x| + ...} of the form (2.16) with B =1, D =
—a(a+l)_l. Then we take p = B, cg(u) = —IulﬁDBz(BH)a-3 as in Section 2.

Figure 1 shows the exact density for normal maxima with n=100, together

with our three approximations, i.e. (1.5) with v = 0, (1.5) with v=v_and
(2.22). All three approximations are close to the true density, but the first

approximation is perceptibly the worst of the three, and the third

approximation the best. Table 1 gives more details of the exact and three

"
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E.‘:. approximate distributions, including mean, variance, skewness and kurtosis of
: each, and three measures of discrepancy between the approximations and exact
e densities: the uniform or Kolmogorov-Smirnov distance (1.6), the Hellinger

118

;SE:' distance (3.3) and total variation distance which, in the same notation as

Es‘gsi.‘ (3.3), is calculated by ‘
:%: V(L. 8) = S () - g (), . (4.4)
:: The calculations confirm our overall claim about the ranking of the three

;E:. approximations. Also shown are the corresponding calculations for the

"YU. threshold distribution, i.e. (2.12) with +-0 (exponential distribution), (2.12)
::E:;' with v = T (2.25). It is noticeable that the first approximation is very
3.'* poor when assessed by skewness and kurtosis, but much better when assessed by
] the other criteria. This is mainly responsible for the adverse comments made
;:.;4 by Fisher and Tippett (1928), who took skewness and kurtosis as their main

vi‘ criterion of fit. It also warns of the danger in using moments for statistical
.,“'" " comparison.

;'-.:':_'.I Figure 2 and Table 2 show corresponding calculations for the lognormal
i:. distribution with 0 = 1, n = 250. We took a larger sample size here because of
f')' the poorer overall fit. The most striking thing here is that the first

:"' . approximation is very much worse than the other two. Note also TS -0.4422
‘C:ES - a long way from its limiting value v = O.

'!' Figure 3 and Table 3 are for the Gamma distribution with a=5, n=100. For
:o. the first approximation in this case we took

s Fo(x) ® exp(=(x/b )%}, x <0

' equivalent to the classical two-parameter Weibull approximation usually assumed
‘:";' _ in this situation. Figure 3 shows strikingly how poor it is. The other two
.) approximations are indistinguishable from the true density, except in one tail.
J"'{ Finally., in Table 4 we give calculations for the normal distribution at
;‘;:'H':' sample sizes n=10", m=1,....5. The decrease in distance from approximate to
:.r\ exact agrees very well with the theoretical rates of decay, of O{(log n)-'l).
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0{(log n)—2)} and O{(log n)—3}, for the three approximations.
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A TABLE 1
s eeeee—e-
&,
L) ‘
STANDARD NORMAL DISTRIBUTION, n = 100.
‘Cf. --------------------------------------
) LOCATION CONST = 2.3263; SCALE CONST = .3752; GAMMA = -.1271 )
.- RHO = 1.0; EPSILON = .0298
R -".\
; I. DISTRIBUTION OF SAMPLE MAXIMA
A ‘
;W EXACT 1ST APPR 2ND APPR 3RD APPR
) ‘f'u
0 MEAN: 2.518 2.553 2.511 2.517
s VARIANCE: .184 .232 .175 .187
R SKEWNESS: -429 1.298 .276 422
Ky KURTOSIS: 3.765 5.399 3.309 3.709
" KOLM-SMIR DIST: .0272 .0052 .0027
R4 TOTAL VARIATION DIST: .0390 . 0065 .0041
L HELLINGER DIST: .083 .026 .011
0,
“5"".
Ut
L II. THRESHOLD DISTRIBUTION
® e
l' EXACT 1ST APPR 2ND APPR 3RD APPR
"
M: MEAN: .344 .380 .338 .345 w
e VARIANCE: .097 .141 .088 .098
T SKEWNESS: 2.529 4.001 2.004 2.512
o KURTOSIS: 6.302 9.001 5.246 6.129 {
o KOLM-SMIR DIST: .0311 .0055 .0013
0 TOTAL VARIATION DIST: .0311 .0055 .0014
;*: HELLINGER DIST: .073 .026 .009
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Sk TABLE 2
N e ———
£y -
R
N
:_} LOG NORMAL DISTRIBUTION, SIGMA = 1, n = 250.
t' """""""""""""""""""""""
” LOCATION CONST = -.0705; SCALE CONST = .0238; GAMMA = -.4422
,;ﬁ . RHO = 1.0; EPSILON = .0557
B
v»; I. DISTRIBUTION OF SAMPLE MAXIMA
u‘" / - T T T T T T T T T T T EE e,
{*' EXACT 1ST APPR 2ND APPR 3RD APPR
¥
IS MEAN: -.0635 -.0563 -.0639 -.0636
O VARIANCE: .00053 .00093 .00050 .00053
frds SKEWNESS: .174 1.298 .226 .208
S KURTOSIS: 3.088 5.400 2.993 3.121
KOLM-SMIR DIST: L1117 .0137 .0053
R TOTAL VARIATION DIST: .1450 .0151 .0062
Ki HELLINGER DIST: .325 .085 .070
K
L
¥
ﬁ; II. THRESHOLD DISTRIBUTION
> T
“& EXACT 1ST APPR 2ND APPR 3RD APPR
B
.2 MEAN: .0179 .0248 .0175 .0179
& VARIANCE: .00016 .00057 .00014 .00016
i SKEWNESS: .63 4.01 .44 .55
- KURTOSIS: 2.96 9.01 2.59 2.76
b KOLM-SMIR DIST: .1262 .0143 .0051
o TOTAL VARIATION DIST: .1262 .0143 .0051
o HELLINGER DIST: .303 .084 .072
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TABLE 3

LOCATION CONST = -1.2791; SCALE CONST = .3222; GAMMA = -.3147
RHO = 1.0; EPSIION = .0381

I. DISTRIBUTION OF SAMPLE MAXIMA

EXACT 1ST APPR 2ND APPR 3RD APPR

MEAN: -1.165 =-1.173 -1.170 -1.167
VARIANCE: .104 .072 .100 .105
SKEWNESS : . 0009 .0646 .0127 .0039
KURTOSIS: 2.834 2.880 2.715 2.808
KOLM-SMIR DIST: .0539 .0078 .0031
TOTAL VARIATION DIST: .1027 .0117 .0066
HELLINGER DIST: .155 .060 .039

II. THRESHOLD DISTRIBUTION

EXACT 1ST APPR 2ND APPR 3RD APPR

MEAN: .2505 .2142 .2461 .2504 '
VARIANCE: . 040 .032 .037 .040

SKEWNESS: 1.055 1.400 .810 .980

KURTOSIS: 3.687 4.200 3.210 3.484

KOLM-SMIR DIST: .0758 .0081 .0032

TOTAL VARIATION DIST: .0785 .0109 .0040

HELLINGER DIST: .100 . 059 .037
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TABLE 4

1ST APPR 2ND APPR 3RD APPR
SAMPLE SIZE 10
KOLM-SMIR DIST: .052 .026 .028
TOTAL VARIATION DIST: .0789 .0350 .0351
HELLINGER DIST: .1404 .1024 .0876
SAMPLE SIZE 100
KOLM-SMIR DIST: .0272 .0052 .0027
TOTAL VARIATION DIST: .0390 . 0065 .0040
HELLINGER DIST: .083 .026 .011
SAMPLE SIZE 1,000
KOLM-SMIR DIST: .01825 .00236 .00039
TOTAL VARIATION DIST: . 02595 .00273 .00067
HELLINGER DIST: .0576 .0122 .0026
SAMPLE SIZE 10,000
KOLM-SMIR DIST: .01368 .00133 .00017
TOTAL VARIATION DIST: .01930 .00157 .00020
HELLINGER DIST: .0433 .0070 .0011
SAMPLE SIZE 100,000
KOLM-SMIR DIST: .01092 .00085 .00009
TOTAL VARIATION DIST: .01531 .00101 .00010
HELLINGER DIST: .0345 .0045 .0006
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FICUPE  1: DENGITY OF SAMFLE MAYTMA FOP STANDARD NORMAL DISTRIBUTTON, n=100.

Top to bottom at x=2,6; 2nd approx.
Ird approx.
Exact
1st approx.

Trp to bottom at x=23.3: 1st approx.
Exact
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2..d approx.
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FIGURE 3: DENSITY OF SAMPLE MINIMA FOR GAMMA DISTRIBUTION, a = 5, n = 1C0.
0 The lst approximation i3 the curve visibly removed from the others; the
>

’ [
e exact density and the 2nd and 3rd approximations are virtually indistinguishable.
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